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Reply to ‘‘Comment on ‘Universal formulas for percolation thresholds’ ’’
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~Received 3 September 1996!

In a recent paper, we reported a universal power law for both site and bond percolation thresholds for any
lattice of cubic symmetry. Extension to anisotropic lattices is discussed.@S1063-651X~97!06101-1#

PACS number~s!: 64.60.Ak, 64.60.Cn, 64.70.Pf
d

.

an

y
b

ir

er

s
In
e

e
a
rd

a
ne
th
la

th

t

hi

la
-
d
re
la
-
n

th

ola-
do
em.
or-
ing

ed
,

the
s
e,
by

he
ed
ms
em
r

n,

ach
opy.
pac-

ec-
-
ther
the
.
ot

s-

w-
nit

We

f the
nd
m-
In Ref. @1#, we have found a power law for both site an
bond percolation thresholds, which writes

pc5p0@~d21!~q21!#2adb ~1!

with d the space dimension andq the coordination number
For site dilutionb50 while b5a for bond dilution. Then a
class of lattices is defined by the set of parameters$p0 ;a%.
One class includes two-dimensional triangle, square,
honeycomb lattices, characterized by$p050.8889;
a50.3601% for site dilution and by
$p050.6558; a50.6897% for bond dilution. Two-
dimensional Kagome´ and all other lattices of cubic symetr
~for d>3) constitute the second class, characterized
$p051.2868; a50.6160% and $p050.7541; a50.9346%
for sites and bonds, respectively. At high dimensions a th
class for hypercubes~sc and fcc! is found, which recovers
the infinite Cayley tree limit.

In the above Comment van der Marck reports the int
esting observation that the stacked triangular lattice~also
called hexagonal lattice! with the lattice parameter
a5b5c (d53, q58) does not fit into the second class.
particular, the percolation thresholds reported are differ
from those associated to thed53, q58 bcc lattice.

This is indeed an interesting observation which, howev
does not contradict our previous work for the following re
son. Within a given class, the percolation threshold acco
ing to Eq. ~1! depends only ond and q, which implicitly
requires that theq nearest neighbors of any site are equiv
lent. This is indeed the case in all lattices we have mentio
in the definition of the classes, but that is not the case of
stacked triangular lattice, which is anisotropic. There, a
tice site has six equivalent nearest neighbors in thea,b plane
~bonding angle is 60°) and two nonequivalent sites along
c axis ~bonding angle is 90°).

Actually, the percolation threshold of an anisotropic la
tice must depend on the degree of anisotropy. This can
viewed on the stacked triangular lattice, if we note that t
lattice is defined by lattice parametersa5bÞc ~the case
a5c considered in the Comment is only a very particu
case!. Then in the limit where thec parameter goes to infin
ity, one is left withab planes which will become decouple
for physical systems with finite ranges of interaction. The
fore, the percolation threshold of the stacked triangular
tice must depend on the ratioc/a and the percolation thresh
old will shift continuously from the numerical values give
by van der Mark in the particular case (c/a51, q58), to
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those of the triangular lattice ind52, in the limit c/a→`.
Note in this limit one recovers an isotropic lattice wi
q56 instead ofq58.

However, it should be stressed that the above interp
tion should not be taken literally. Percolation thresholds
depend on site connectivity and not on length between th
Then, if one wishes to generalize the Galam-Mauger f
mula, anisotropy should be taken into account by replac
the q parameter by some effective value betweenq58 and
q56. Indeed, we found that a unique value ofq56.65 re-
produces within the second universality class atd53 both
percolation thresholds 0.2614~site! and 0.1875~bond! in
agreement with the result of Van der Marck for the stack
triangular lattice withc5a, which are 0.2623 and 0.1859
respectively.

According to these consideration, we can now discuss
limits of validity for the Galam-Mauger formula, which wa
lacking in Ref.@1#. Along the stacked triangular lattice cas
one may also construct anisotropic percolation problems
having, for instance, two different bond probabilities in t
two different lattice directions of the square lattice. Direct
percolation would be another example. All these proble
are more complicated that the isotropic percolation probl
considered in Ref.@1#, and were not considered in this prio
work.

Extension of the formula, in view of above discussio
seems, however, possible, if one replacesq by an effective
value. However, this value has to be determined for e
case, depending on the nature and strength of the anisotr
Nevertheless, the Galam-Mauger formula preserves a ca
ity of prediction. Knowledge of one~either site or bond!
percolation threshold allows the determination of the eff
tive value ofq for each anisotropic percolation problem in
vestigated. Then this value can be used to estimate the o
percolation threshold. Otherwise the direct estimate of
effectiveq is required to yield both percolation thresholds

Note that the Galam-Mauger formula actually applies n
only to lattices with cubic symetry investigated in Ref.@1#,
but also to all isotropic lattices in general. This can be illu
trated with the hexagonal compact~hcp! lattice. This is ac-
tually not a Bravais lattice, because, on a topologic vie
point, it is a simple hexagonal lattice with two atoms per u
cell. However, each atom in this structure hasq512 nearest
neighbors with the same bonding angle for each of them.
are then in the isotropic case withd53, q512 so that we
predict the same percolation thresholds as in the case o
fcc lattice atd53, namely, 0.192 and 0.117 for site and bo
percolation thresholds, respectively according to the Gala
Mauger formula.
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55 1231COMMENTS
Percolation thresholds for the hcp were given by Sha
and Kirpatrick@2# two decades ago, giving 0.204~site! and
0.124~bond!. These authors report for the fcc site and bo
percolation thresholds 0.199 and 0.125, respectively. C
parison with modern values available for the fcc shows t
their last digit is not accurate. We can then conclude that
agreement between fcc and hcp percolation threshold
good and actually much better than hexagonal and bcc o
as expected.
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